เนื้อหาของคอร์ส
การแยกตัวประกอบของพหุนามดีกรีสอง
การเขียนพหุนามที่กำหนดให้ ให้อยู่ในรูปการคูณของพหุนามตั้งแต่สองพหุนามขึ้นไป โดยที่แต่ละพหุนามหารพหุนามที่กำหนดให้ได้ ลงตัว เป็นตัวอย่างของ การแยกตัวประกอบพหุนาม (factorization) 1) การแยกตัวประกอบพหุนามโดยใช้สมบัติการแจกแจง สมบัติการแจกแจงกล่าวว่า ถ้า a,b และ c แทนจำนวนเต็มใดๆแล้ว a(b+c) = ab+ac หรือ (b+c)a = ba+ca เราอาจเขียนสมบัติการแจกแจง ข้างต้นใหม่ ดังนี้ ab+ac = a(b+c) หรือ ba+ca = (b+c)a ถ้า a,b และ c เป็นพหุนาม เราก็สามารถใช้สมบัติการแจกแจงข้างต้นได้ด้วย และเรียก a ว่า ตัวประกอบร่วมของ ab และ ac หรือ ba และ ca 2) การแยกตัวประกอบพหุนามดีกรีสองตัวแปรเดียว พหุนามดีกรีสองตัวแปรเดียว คือ พหุนามที่เขียนในรูป ax2 + bx + c เมื่อ a , b , c เป็นค่าคงตัวที่ a ≠ 0 และ x เป็นตัวแปร การแยกตัวประกอบของพหุนามดีกรีสองตัวแปรเดียวในรูป ax2 + bx + c เมื่อ a , b เป็นจำนวนเต็ม และ c = 0 ในกรณีที่ c = 0 พหุนามดีกรีสองตัวแปรเดียวจะอยู่ในรูป ax2+ bx สามารถใช้สมบัติการแจกแจงแยกตัวประกอบได้ การแยกตัวประกอบของพหุนามดีกรีสองตัวแปรเดียวในรูป ax2 + bx + c เมื่อ a = 1 , b และ c เป็นจำนวนเต็ม และ c ≠ 0 ในกรณีที่ a = 1 และ c ≠ 0 พหุนามดีกรีสองตัวแปรเดียว จะอยู่ในรูป x2 + bx + c สามารถแยกตัวประกอบของพหุนามในรูปนี้ได้ โดยอาศัยแนวคิดจากการหาผลคูณของพหุนาม 3) การแยกตัวประกอบพหุนามดีกรีสองที่เป็นกำลังสองสมบูรณ์ ในกรณีทั่วไป ถ้าให้ A แทนพจน์หน้า และ B แทนพจน์หลัง จะแยกตัวประกอบของพหุนามดีกรีสองที่เป็นกำลังสองสมบูรณ์ได้ตามสูตร ดังนี้ A2 + 2AB + B2 = (A + B)2 A2 − 2AB + B2 = (A − B)2 4) การแยกตัวประกอบพหุนามดีกรีสองที่เป็นผลต่างกำลังสอง ในกรณีทั่วไป ถ้าให้ A แทน พจน์หน้า และ B แทน พจน์หลัง จะแยกตัวประกอบของพหุนามดีกรีสองที่เป็นผลต่างของกำลังสองได้ตามสูตร ดังนี้ A2 – B2 = (A + B)(A – B)
0/4
วิชาคณิตศาสตร์พื้นฐาน ชั้นมัธยมศึกษาปีที่ 2 (ค22102) ภาคเรียนที่ 2 ปีการศึกษา 2564
เกี่ยวกับบทเรียน

การวัดค่ากลางของข้อมูล

การหาค่ากลางของข้อมูลที่เป็นตัวแทนของข้อมูลทั้งหมดเพื่อความสะดวกในการสรุปเรื่องราวเกี่ยวกับข้อมูลนั้นๆ จะช่วยทำให้เกิดการวิเคราะห์ข้อมูลถูกต้องดีขึ้นการหาค่ากลางของข้อมูลมีวิธีหาหลายวิธี แต่ละวิธีมีข้อดีและข้อเสีย และมีความเหมาะสมในการนำไปใช้ไม่เหมือนกัน ขึ้นอยู่กับลักษณะข้อมูลและวัตถุประสงค์ของผู้ใช้ข้อมูลนั้นๆ

ค่ากลางของข้อมูลที่สำคัญ มี 3 ชนิด คือ

1. ค่าเฉลี่ยเลขคณิต (Arithmetic mean) คือ จำนวนที่ได้จากการหารผลบวกของข้อมูลทั้งหมดด้วยจำนวนข้อมูล

2. มัธยฐาน (Median) คือ ค่ากลางของข้อมูลซึ่งเมื่อเรียงข้อมูลจากน้อยไปมากหรือจากมากไปน้อยแล้ว จำนวนข้อมูลที่น้อยกว่าค่านั้นจะเท่ากับจำนวนข้อมูลที่มากกว่าค่านั้น

3. ฐานนิยม (Mode) คือ ข้อมูลที่มีความถี่มากที่สุดในข้อมูลชุดนั้น

ไฟล์ตัวอย่าง
คาบที่ 17.pdf
ขนาด: 739.01 KB
คาบที่ 16.pdf
ขนาด: 1.24 MB
คาบที่ 18.pdf
ขนาด: 850.98 KB
คาบที่ 19-20.pdf
ขนาด: 1.01 MB
สื่อคาบที่ 21-23.pdf
ขนาด: 1.89 MB
ใบงานแบบฝึกหัดคณิตศาสตร์-ม.2-สถิติ.pdf
ขนาด: 2.08 MB